Causal- 3g

Needs a Title

Stephen Hawking has long been praised as one of the most intelligent minds of our time. He has made incredible strides in the field of astrophysics and is arguably the most innovative influencers in said field. He has theorized many properties of black holes that we take to be truth today. Many more theories have stemmed from these, furthering our understanding of black holes and the way in which they function, or so we think. Consider though, if Stephen Hawking was not in fact correct in his theories. If these theories were incorrect, not only would they lead us to the wrong conclusions when studying black holes, but it also limits our creativity when viewing black holes conceptually.

One of Hawking’s most well-known theories is Hawking radiation. This theory is basically an answer to the question: If black holes absorb particles, what do they emit? Joel Hruska better explains this theory in Stephen Hawking may have finally solved the black hole ‘information’ problem as: “black holes do emit particles in the form of so-called Hawking radiation. That means that over time- an absolutely fantastic amount of time- black holes evaporate. But if a black hole can evaporate, what happens to the information about the material it once absorbed?” The problem with this theory is that seemingly whatever happens to the information stored in black holes, contradicts quantum mechanics.

If the particles do in fact just disappear with the black hole, that defies the principals of quantum mechanics, but if they do not ever escape the hole, that also would not be quantumly possible. From this complication, stems more theories. This next theory, also masterminded by Hawking, gives an answer to this. He considers the idea that the particles absorbed never actually enter the black hole, but rather are trapped in the boundaries of the black hole. Those boundaries we call “super translations.” So, for this to be possible, Joel Hruska again explains in the same article that, “the physical material (information) swallowed by the black hole never actually enters it at all. Instead, it’s smashed into the point of no return and encoded as a two-dimensional hologram.” This may seem incredibly hard to believe, but the theory behind them is very strong.

This information is then released in the form of quantum fluctuations. These are ripples in a quantum field, like an electric field. These quantum fields still exist even if there are no particles existing within them. Even if this is the case, these fields are never actually quiet. Described by Matt Strassler in Quantum Fluctuations and Their Energy , “Even in what we consider empty space, the fields are still there, sitting quietly in empty space, much as there’s water in the pond even if no wind or pebbles are making ripples on its surface, and there’s still air in the room even if there’s no sound.” The amount of energy that a single fluctuation can produce in just one cubic meter is millions upon millions of times larger than that of ordinary matter. This energy has enough power to cause mass destruction throughout the universe, and that is just within one cubic meter of these fluctuations! So, it is not impossible to imagine that these fluctuations release an incredible amount of information.

One must remember that these theories are still just that, theories. Because the dangers of black holes prevent us from being able to study them physically, the only other ways to are mathematically and theoretically. Though numbers don’t lie, the theory could be completely wrong, and what is known about black holes today could be at least distorted in comparison to reality. It seems that if Hawking’s theories are indeed correct, the idea of a wormhole within a black hole seems completely impossible, at least the way we envision it today. Even though, there are still many theories surrounding this idea, as it is still on the forefront of the astrophysics curiosities. There are surely many other theories like this as well, and it is reasonable to predict that most of these are incorrect.

Perhaps the most interesting theory is that of wormholes. This theory comes from the idea of spacetime and the curvature of it. Space time can be visualized as elastic, or almost like a trampoline, except it isn’t ejecting any planets into other parts of space. When a mass is placed on a trampoline, the trampoline sinks around the mass, and it creates a sort of dent in. Now, if one pictures spacetime as two trampolines on top of each other we can use Kevin Bonsor and Robert Lamb’s logic in How Time Travel Works to explain how this effect creates wormholes, “Placing the baseball on the top side will cause a curvature to form. If an equal mass were placed on the bottom part of the sheet at a point that corresponds with the location of the baseball on the top, the second mass would eventually meet with the baseball. This is similar to how wormholes might develop.” This is why black holes are often theorized to be wormholes as well. They have the largest mass and gravitational force in the universe that we know of, and if the spacetime curvature was large enough, it could be used as a much faster passage to another part of the universe. This is only one of the theories that could be proven by different mean if not for Hawking’s theories.

If Hawking’s theories are neglected completely, there is a world of opportunity to explore new ideas about black holes. If we neglect everything we know about them, there is a completely blank slate to start anew on. One could theorize that black holes don’t crush anything, but act solely as wormholes, or that the event horizon acts as a shield and keeps any particles out of the center of black holes. The possibilities are endless. If Hawking had never theorized Hawking radiation, many advancements in the studies of black holes would have been made, and the course of black hole studies could have been drastically different.


Hruska, Joel. “Stephen Hawking May Have Finally Solved the Black Hole ‘Information’ Problem.”

ExtremeTech, 27 Aug. 2015,

Lamb, Robert. “How Time Travel Works.” HowStuffWorks Science, HowStuffWorks, 20 Oct. 2000,

Strassler, Matt. “Quantum Fluctuations and Their Energy.” Of Particular Significance, 30 Aug. 2013,

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s